Female meiosis drives karyotypic evolution in mammals.

نویسندگان

  • F Pardo-Manuel de Villena
  • C Sapienza
چکیده

Speciation is often accompanied by changes in chromosomal number or form even though such changes significantly reduce the fertility of hybrid intermediates. We have addressed this evolutionary paradox by expanding the principle that nonrandom segregation of chromosomes takes place whenever human or mouse females are heterozygous carriers of Robertsonian translocations, a common form of chromosome rearrangement in mammals. Our analysis of 1170 mammalian karyotypes provides strong evidence that karyotypic evolution is driven by nonrandom segregation during female meiosis. The pertinent variable in this form of meiotic drive is the presence of differing numbers of centromeres on paired homologous chromosomes. This situation is encountered in all heterozygous carriers of Robertsonian translocations. Whenever paired chromosomes have different numbers of centromeres, the inherent asymmetry of female meiosis and the polarity of the meiotic spindle dictate that the partner with the greater number of centromeres will attach preferentially to the pole that is most efficient at capturing centromeres. This mechanism explains how chromosomal variants become fixed in populations, as well as why closely related species often appear to have evolved by directional adjustment of the karyotype toward or away from a particular chromosome form. If differences in the ability of particular DNA sequences or chromosomal regions to function as centromeres are also considered, nonrandom segregation is likely to affect karyotype evolution across a very broad phylogenetic range.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meiosis onset is postponed to postnatal stages during ovotestis development in female moles.

In mammals, germ cells are important both during development and for the function of female gonads, whereas male gonads may develop in the absence of germ cells. The gonads of female moles (genus Talpa) develop according to a testis-like pattern which results in the formation of ovotestes. In this paper, we studied the expression pattern of several pre-meiotic and meiotic germ cell markers, in ...

متن کامل

Cdk1 drives meiosis and mitosis through two different mechanisms

Cell cycle progression in mammals involves multiple cyclin-dependent kinases (Cdks). Mice lacking Cdk2, Cdk3, Cdk4 or Cdk6 are viable, however, because Cdk1 can compensate for their loss by forming active complexes with A-, B-, Eand D-type cyclins in a stepwise manner. Thus, these Cdks are not essential for the mammalian cell cycle. In contrast, homozygous deletion of Cdk1 causes early embryoni...

متن کامل

Evolution of the life cycle in land plants

All sexually reproducing eukaryotes have a life cycle consisting of a haploid and a diploid phase, marked by meiosis and syngamy (fertilization). Each phase is adapted to certain environmental conditions. In land plants, the recently reconstructed phylogeny indicates that the life cycle has evolved from a condition with a dominant free-living haploid gametophyte to one with a dominant free-livi...

متن کامل

Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals.

In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after b...

متن کامل

The Use of Tree Comparison Metrics

KING, M. 1983. Karyotypic evolution in Gehyra (Gekkonidae: Reptilia). 3. The Gehyra australis complex. Aust. J. Zool., 31:723-741. KING, M. 1984. Karyotypic evolution in Gehyra (Gekkonidae: Reptilia). 4. Chromosome change and speciation. Genetica, 65: 101-114. KING, M., AND D. KING. 1977. An additional chromosome race of Phyllodactylus marmoratus (Gray) (Reptilia: Gekkonidae) and its phylogenet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 159 3  شماره 

صفحات  -

تاریخ انتشار 2001